scDRS#

scDRS (single-cell disease-relevance score) is a method for associating individual cells in scRNA-seq data with disease GWASs, built on top of AnnData and Scanpy.

Check out our manuscript Zhang*, Hou*, et al. “Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data.

Explore results for 74 diseases/traits and the TMS FACS data on cellxgene.

Installation#

git clone https://github.com/martinjzhang/scDRS.git
cd scDRS
pip install -e .

Quick test:

python -m pytest tests/test_CLI.py -p no:warnings

Install via PyPI

pip install scdrs==1.0.2

Quick test for PyPI installation: open Python (>=3.5) and run the code in the Usage section below.

Install other versions

Usage#

Use scDRS command-line interface (CLI) for standard analyses.

Use scDRS Python API for customized analyses.

Here is a toy example for computing scDRS scores.

import os
import pandas as pd
import scdrs

DATA_PATH = scdrs.__path__[0]
H5AD_FILE = os.path.join(DATA_PATH, "data/toydata_mouse.h5ad")
COV_FILE = os.path.join(DATA_PATH, "data/toydata_mouse.cov")
GS_FILE = os.path.join(DATA_PATH, "data/toydata_mouse.gs")

# Load .h5ad file, .cov file, and .gs file
adata = scdrs.util.load_h5ad(H5AD_FILE, flag_filter_data=False, flag_raw_count=False)
df_cov = pd.read_csv(COV_FILE, sep="\t", index_col=0)
df_gs = scdrs.util.load_gs(GS_FILE)

# Preproecssing .h5ad data compute scDRS score
scdrs.preprocess(adata, cov=df_cov)
gene_list = df_gs['toydata_gs_mouse'][0]
gene_weight = df_gs['toydata_gs_mouse'][1]
df_res = scdrs.score_cell(adata, gene_list, gene_weight=gene_weight, n_ctrl=20)

print(df_res.iloc[:4])

Expected results:

index

raw_score

norm_score

mc_pval

pval

nlog10_pval

zscore

N1.MAA000586.3_8_M.1.1-1-1

4.741197

6.3260064

0.04761905

0.0016638935

2.7788744

2.9357162

F10.D041911.3_8_M.1.1-1-1

4.739066

5.916272

0.04761905

0.0016638935

2.7788744

2.9357162

A17_B002755_B007347_S17.mm10-plus-7-0

4.6366262

5.5523157

0.04761905

0.0016638935

2.7788744

2.9357162

C22_B003856_S298_L004.mus-2-0-1

4.6805663

7.2986684

0.04761905

0.0016638935

2.7788744

2.9357162

G12.B002765.3_38_F.1.1-1-1

4.640043

5.7792473

0.04761905

0.0016638935

2.7788744

2.9357162

H5.B003278.3_38_F.1.1-1-1

4.4457436

-0.5613674

0.7619048

0.687188

0.16292442

-0.48789537

O14.MAA000570.3_8_M.1.1-1-1

4.4552336

-1.5821338

0.95238096

0.9467554

0.023762206

-1.6141763

J21.B000634.3_56_F.1.1-1-1

4.4433637

-2.3119287

1.0

0.9916805

0.0036282123

-2.3945906

E5.B002765.3_38_F.1.1-1-1

4.4870768

1.1566308

0.23809524

0.13311148

0.87578446

1.1118028

K20_B000268_B009896_S260.mm10-plus-4-0

4.53548

-3.1656132

1.0

1.0

-0.0

-10.0

Examples#